## **ANEMIA**

**General information** 

### **Definition of anemia**

- 1. Reduction in the hemoglobin concentration in blood
- 2. Decreased total circulating red cell mass

## Normal values for peripheral blood

|                                                     |          | <b>Female</b>        | <u>Male</u>          |  |  |  |
|-----------------------------------------------------|----------|----------------------|----------------------|--|--|--|
| <b>Erythrocytes</b>                                 | (per µl) | $4.8\pm0.6$ x $10^6$ | $5.4\pm0.8$ x $10^6$ |  |  |  |
| Hemoglobin                                          | (g/dl)   | 14 ±2                | 16 ±2                |  |  |  |
| Hematocrit                                          | (%)      | 42 ±5                | 47 ±5                |  |  |  |
| Reticulocytes                                       | (%)      | 1                    | 1                    |  |  |  |
| Mean corpuscular volume (MCV; μm³)                  |          |                      |                      |  |  |  |
| Mean corpuscular hemoglobin (MCH; pg)               |          |                      |                      |  |  |  |
| Mean corpuscular hemoglobin concentration (MCHC; %) |          |                      |                      |  |  |  |

### Etiologic classification of anemias

- I. Impaired red cell production
  - A. Disturbance of proliferation and differentiation of stem cells
  - B. Disturbance of proliferation and maturation of erythrocytes
- II. Increased rate of destruction (hemolytic anemias)
  - A. Intrinsic abnormalities
  - **B.** Extrinsic abnormalities

## Etiologic classification of anemias (1)

### I. Impaired red cell production

- A. Disturbance of proliferation and differentiation of tem cells: aplastic anemia, pure red cell aplasia
- **B.** Disturbance of proliferation and maturation of erythrocytes:
  - 1. Defective DNA synthesis (megaloblastic anemias)
  - 2. Defective Hb synthesis:
    - a/ Deficient heme synthesis: iron deficiency
    - b/ Deficient globin synthesis: thalassemia
  - 3. Unknown or multiple mechanisms: anemia of chronic disease

## **Etiologic classification of anemias (2)**

### II. Increased rate of destruction (hemolytic anemias)

- A. Intrinsic abnormalities
  - Hereditary
    - 1. Red cell membrane defects: hereditary spherocytosis, eliptocytosis
    - 2. Red cell enzyme deficiencies
      - a/ Glycolytic enzymes: pyruvate kinase, hexokinase
      - b/ Enzymes of hexose monophosphate shunt: G-6PD, glutathione synthetase
    - 3. Disorders of globin synthesis
      - a/ Deficient globin synthesis: thalassemia
      - b/ Structurally abnormal globin synthesis: sickle cell anemia

### Acquired

1. Membrane defect: paroxysmal nocturnal hemoglobinuria

### **Etiologic classification of anemias (3)**

#### **B.** Extrinsic abnormalities

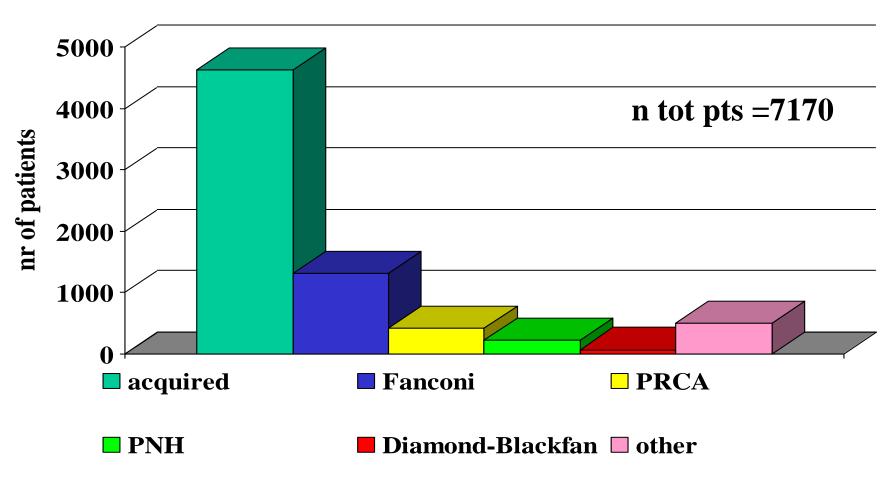
- 1. Antibody mediated
  - a/ Autoantibodies (idiopathic, drug-associated, SLE, malignancies)
  - b/ Isohemagglutinins (transfusion reactions, erythroblastosis fetalis)
- 2. Mechanical trauma of RBC
  - a/ Microangiopathic hemolytic anemias (TTP, DIC)
  - b/ Cardiac traumatic hemolytic anemia
- 3. Chemicals and microorganisms
- 4. Sequestration in mononuclear phagocytic system
  - hypersplenism

## Classification of anemias (simplified)

- 1. Deficiency anemias
- 2. Aplastic anemia
- 3. Hemolytic anemias
- 4. Secondary anemias

## Morphologic classification of anemias

| Type                             | MCV                 | MCHC      | Common cause                                                |
|----------------------------------|---------------------|-----------|-------------------------------------------------------------|
| Macrocytic anemia                | increased           | normal    | Vitamin B <sub>12</sub> deficiency<br>Folic acid deficiency |
| Microcytic anemia                |                     |           |                                                             |
| - hypochromic                    | decreased           | decreased | Iron deficiency<br>Thalassemia                              |
| - normochromic                   | decreased or normal | normal    | Spherocytosis                                               |
| Normocytic anemia - normochromic | normal              | normal    | Aplastic anemia Chronic renal failure Some hemolytic anemia |


## Bone marrow failure

### Bone marrow failure

Aplastic anemia
Pure red cell aplasia

Congenital Acquired

### **Diagnosis**





### Aplastic anemia (AA)

### Definition

 AA is characterized by pancytopenia with hypocellular marrow; hematopoietic tissue is replaced by fat cells, in absence of abnormal infiltrate or increase in reticulin

### • Incidence (acquired)

- 2/1000000 (Europe, North America)
- 2-3 times higher in East Asia
- rare < 1 year; peaks from 10 to 20 yrs; plateaus 20-60 yrs; increase > 60 yrs

### Causes of aplastic anemia (1)

- I. Primary (idiopathic) 70-80%: immune-mediated disease
- II. Secondary drugs
  - 1. Unpredictable (idiosyncratic reaction)
  - antiepileptic drugs (hydantoins)
  - oral antidiabetic agents (tolbutamide, chlorpropamide)
  - tranquillizers (chlorpromazine, chlordiazepoxide)
  - antirheumatic drugs (gold, indomethacin, phenylobutazone)
  - antibacterial agents (sulfonamides, isoniazid, streptomycin, tetracyclines, <u>chloramphenicol</u>)
  - 2. Unpredictable hypersensitivity (immune reaction)
    - many drugs

## Causes of aplastic anemia (2)

#### III. Associated diseases

- 1. viral hepatitis
- 2. CMV infection
- 3. EBV infection
- 4. Parvovirus B19
- 5. paroxysmal nocturnal hemoglobinuria
- IV. Industrial and household chemicals: benzene, some organic solvents, trinitrotoluene, certain insecticides (DDT, chlordane, lindane)

## Causes of marrow aplasia

- 1. Ionizing radiation
- 2. Antineoplastic drugs:
  - folic acid antagonists,
  - alkylating agents,
  - anthracyclines,
  - nitrosoureas
  - purine and pyrimidine analogous

### **Pathogenesis of AA**

- Quantitative or qualitative abnormalities of pluripotent stem cell
- Abnormal humoral or cellular control of hematopoiesis
- Abnormal hematopoietic microenvironment
- Immunologic suppression of hematopoiesis

## Diagnosis of aplastic anemia

- 1. Personal medical history; family history
- 2. Physical examination
- 3. Clinical symptoms:
  - infections
  - bleeding
  - symptoms of anemia
- 4. Laboratory findings:
  - anemia, neutropenia, thrombocytopenia
  - bone marrow: hypocellular with fatty changes

### Diagnosis of AA

- 1. FBC and reticulocyte count
- 2. Blood film examination
- 3. HbF% in children
- 4. Bone marrow aspirate and trephine biopsy, including cytogenetics
- Peripheral blood chromosomal breakage analysis to exclude Fanconi anaemia if <50 years</li>
- Flow cytometry for GPI-anchored proteins (see note below concerning Ham test)\*
- Urine haemosiderin if Ham test positive or GPI-anchored protein deficiency
- 8. Vitamin B12 and folate
- 9. Liver function tests
- 10. Viral studies: Hepatits A, B and C, EBV, HIV (CMV, see page 5)
- Anti-nuclear antibody and anti-dsDNA
- Chest X-ray
- Abdominal ultrasound scan and echocardiogram
- 14. Peripheral blood gene mutation analysis for dyskeratosis congenita DKC1, TERC, ?TERT) if clinical features or lack of response to immunosuppressive therapy

## Criteria for diagnosis of AA

1. Cytopenia - Hb <10 g/dL - ANC <1,5 G/L - PLT <100 G/L

- 2. Bone marrow histology and cytology
  - decreased marrow cellularity (< 30%)
  - increased fat cells component
  - no extensive fibrosis
  - no malignancy or storage disease
- 3. No preceding treatment with X-ray or antyproliferative drugs
- 4. No lymphadenopathy or hepatosplenomegaly
- 5. No deficiencies or metabolic diseases
- 6. No evidence of extramedullary hematopoiesis

## Classification of aplastic anemia

Severe AA

(Camitta et al, 1975)

Very severe AA (Bacigalupo *et al*, 1988)

Non-severe AA

BM cellularity <25%, or 25–50%

with <30% residual haemopoietic cells\*

2/3 of the following:

Neutrophil count  $<0.5 \times 10^9/1$ 

Platelet count  $<20 \times 10^9/1$ 

Reticulocyte count  $<20 \times 10^9/1$ 

As for severe AA but neutrophils

$$<0.2 \times 10^{9}/1$$

Patients not fulfilling the criteria for severe or very severe aplastic anaemia

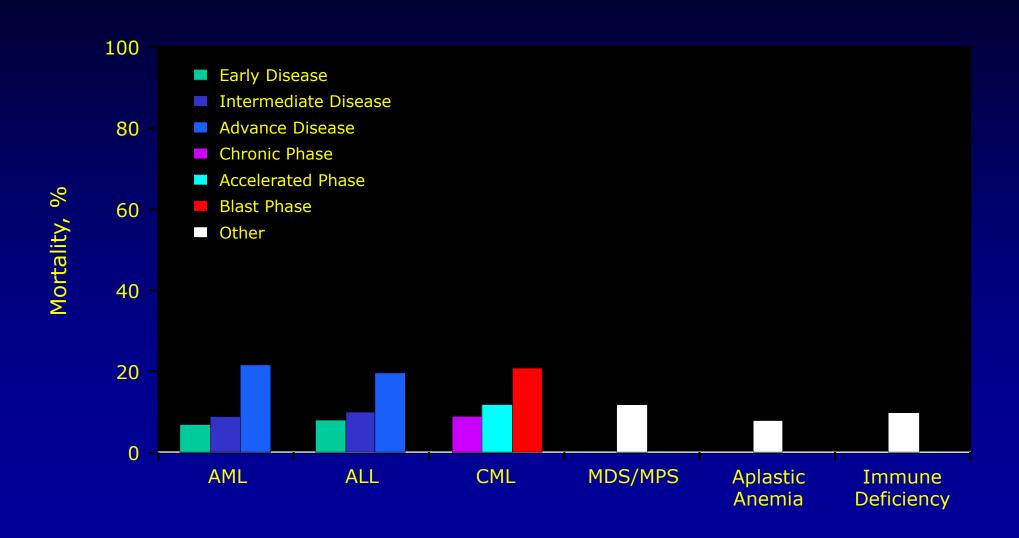
# Prognosis of SAA with supportive therapy only

The overall mortality is 65-75% and the median survival 3 months

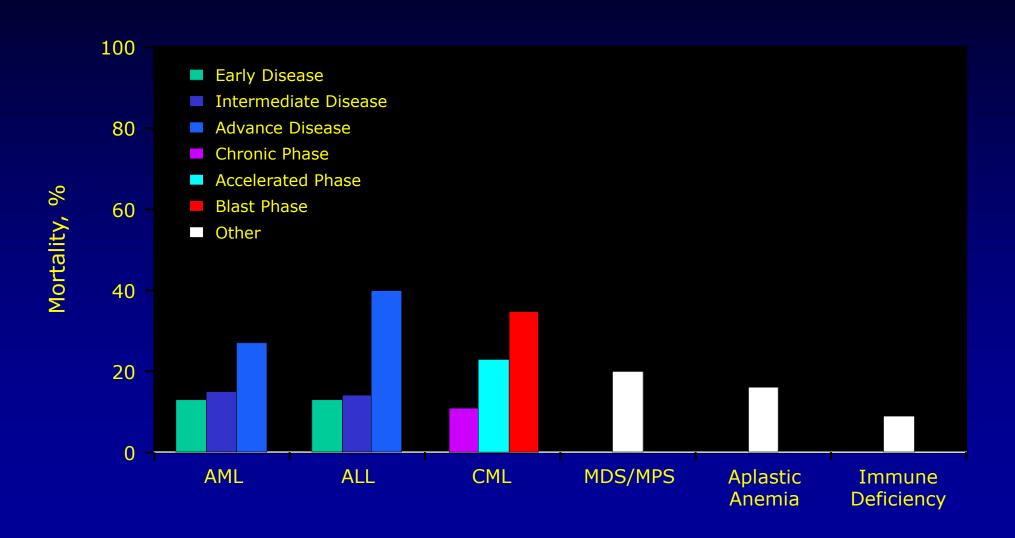
## Management of severe aplastic anemia

- 1. Hematopoietic stem cell transplantation
- 2. Immunosuppressive treatment
  - cyclosporine
  - antilymphocyte/antityhymocyte globulin,
  - methylprednisolone
- 3. Androgens
- 4. Supportive therapy

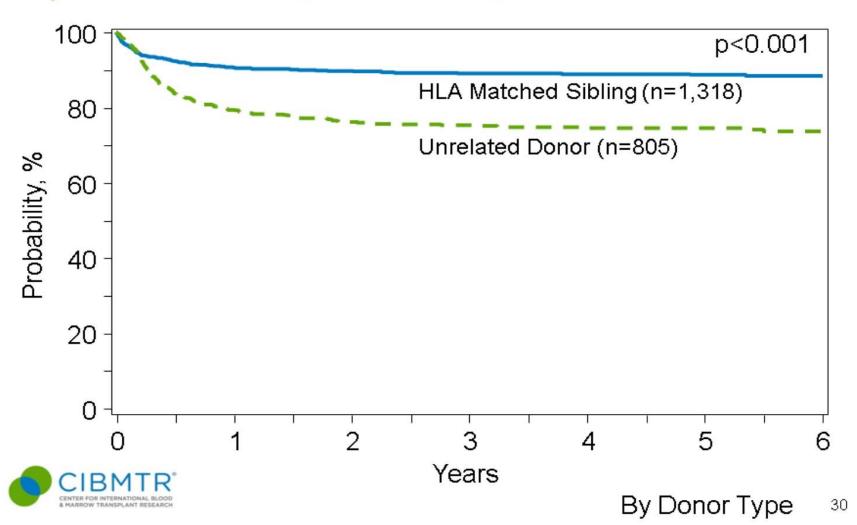
# Hematopoietic stem cell transplatation in severe aplastic anemia


### 1. Advantages

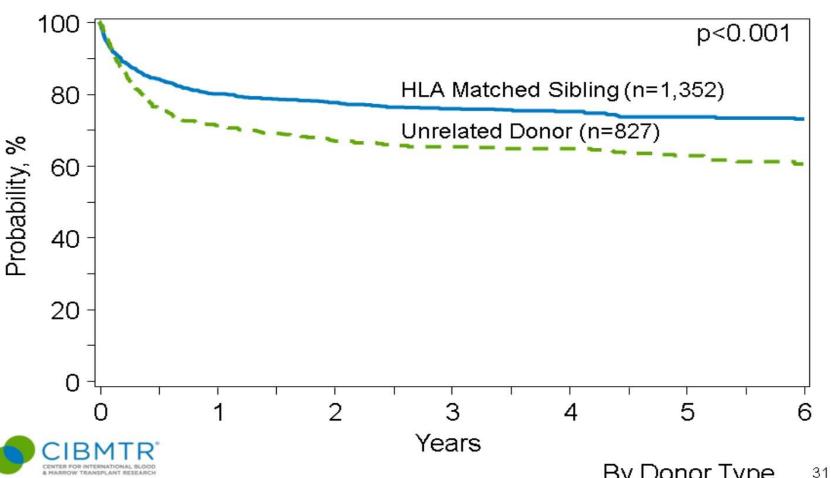
- correction of hematopoietic defect
- long-term survival: 75% 90% (HLA-matched sibling donor)
- majority of the patients appear to be cured


#### 2. Restrictions

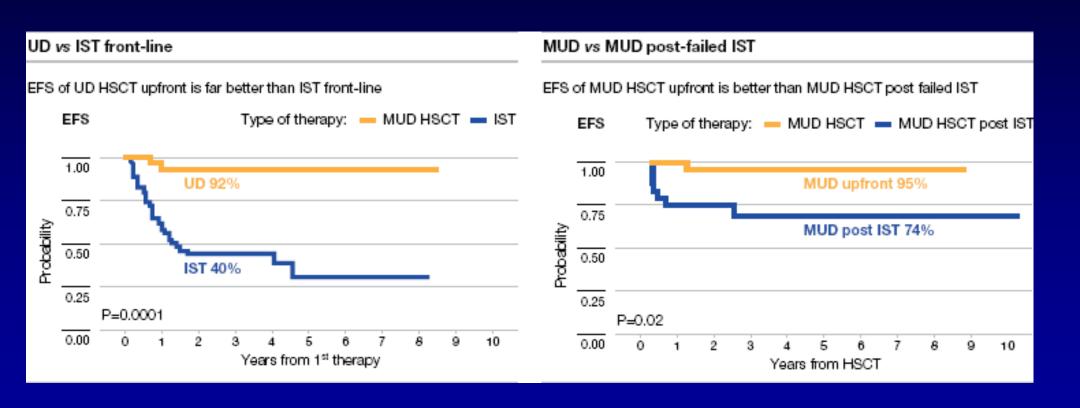
- age
- suitable donor (sibling vs unrelated)
- 12-30% risk of acute and 30-40% risk of chronic GVHD
- 4-14% risk of graft failure in multitransfused patients
- solid tumors (12%)


## 100-day mortality after HLA-identical sibling transplantation




## 100-day mortality after unrelated donor transplantation




## Survival after Allogeneic Transplants for Severe Aplastic Anemia, <20 Years, 2003-2013



### Survival after Allogeneic Transplants for Severe Aplastic Anemia, ≥20 Years, 2003-2013



## Aplastic anemia - SCT



### Immunosuppressive therapy in SAA

### Immunosuppresive therapy

- Non-severe aplastic anemia
- Severe aplastic anemia
  - > 40-50 yrs old
  - No HLA identical donor

### Combination therapy

- Antithymocyte globulin
- Cyclosporin
- methylprednisolone

60-80%

## Complication of immunosuppressive therapy

### 1. Failure of therapy and relapse of AA

- a) exhaustion of stem cell reserves
- b) insufficient immunosuppression
- c) misdiagnosis (MDS)
- d) hereditary bone marrow failure (non-immune pathogenesis)

### 2. Relapse of AA

### 3. Hematopoietic clonal disease

- a) acute myelogenous leukemia
- b) myelodysplastic syndrom
- c) paroxysmal nocturnal hemoglobinuria

# Other agents in treatment of AA (immunosuppresive, immunomodulators)

- 1. Mycofenolate mofetil (Cellcept)
- 2. Anti-Il-2 receptor monoclonal antibody (daclizumab; Zenapax)
- 3. Anti CD52 monoclonal antibody (alemtuzumab; Campath)
- 4. Rapamycin
- 5. Anti-TNF alfa monoclonal antibody (etanercept; Enbrel)

## Therapy of non-severe aplastic anemia

- 1. "Watch and wait"
- 2. Androgens (?)
- 3. Supportive care

blood and platelet transfusion antibiotics growth factors iron chelation therapy

4. Immunosuppressive treatment in selected patients

## Androgens in the treatment of AA

- 1. Severe aplastic anemia
  - no effect when applied as a single agent
  - improve the results if in combination with ATG and cyclosporine
- 2. Non-severe aplastic anemia
  - effective in 20-30% of patients

## Causes of pancytopenia

### 1. Failure of production of blood cells

- a) bone marrow infiltration
  - acute leukemias
  - hairy cell leukemia
  - multiple myeloma
  - lymphoma
  - myelofibrosis
  - metastatic carcinoma
- b) aplastic anemia
- c) vit.B12 and folate deficiency

### 2. Ineffective hematopoesis

- myelodysplastic syndrome

### 3. Increased destruction of blood cells

- hipersplenism
- autoimmune disorders
- paroxysmal nocturnal hemoglobinuria
- 4. Myelosuppression after irradiation or antiproliferative drugs

## Case report 1

• P.W. 18-years-old student

January 2002 : appendectomy

April 2002 : hepatitis B

June 2002 : progressive pancytopenia

- July 2002 : SAA

September 2002 : BMT from sibling donor

alive and healthy

## Case report 2

- P.S. 16-years-old girl
  - February 2000 : non-severe aplastic anemia
    - blood transfusion
  - November 2001 : immunosuppresive treatment
    - without improvement
  - May 2002 : BMT from sibling donor
    - complete recovery before +30 day
  - June 2002 : died because of TTP

## Case report 3

- M.R. 25-years-old woman
  - June 2006 : severe aplastic anemia
    - no sibling donor
  - July 2006 : immunosuppressive treatment
    - without improvement
  - December 2006: immunosuppressive treatment
    - improvement ( without blood and platelet transfusion)
  - November 2007 : relapse of SAA
  - September 2008 : PBSCT from unrelated donor
  - alive and healthy